
Video

Call

Quality

WebRTC
Guidebook

https://www.daily.co

A video call involves encoding video and audio

in real time, transmitting the encoded streams

across the network and adapting quickly to

changing network conditions, and finally

decoding and playing the video and audio.

Humans can perceive small variations in

resolution, frame rate, audio quality, and

latency. So all of these operations need to

happen quickly.

Despite this complexity, billions of people have

devices on their desks and in their pockets that

are capable of high-quality video call

experiences. This guide explains what goes into

delivering great video call experiences,

anywhere in the world, on any device.

Video calls are one  
of the most demanding
and complicated jobs
that we ask our
computers, tablets,  
and phones to do.

1WebRTC

Video Call

Quality

2
It is important for developers who implement

video calls to understand all three of these

potential problem areas at a high level.

Additionally, developers will either need to be

able to test across a wide variety of real-world

networks and devices, or to build on top of a

platform that provides full network, CPU, and

device-management support.

�� Adjusting dynamically to network condition�

�� Managing CPU us�

�� Helping ensure users’ cameras, microphones,

and speakers are working as expected

Delivering high-quality
and reliable video calls
requires:

Building
Blocks and  
Key Concepts

This document will cover
the following concepts:

We also try to highlight
areas where the details
about video call quality
can be surprising:

� Most network issues that impact video call

quality happen on local WiFi, not on long-

distance Internet links�

� Using the “unreliable” UDP networking protocol is

better for video calls than the “reliable” TCP

protocol�

� Consumer Internet speed tests are mostly not

useful for testing whether a network connection

will be good for video calls�

� Routing video and audio through media servers

can often improve latency and lower packet loss

compared to routing peer-to-peer.

� Encoding streaming playbac�

� Real-time networkin�

� TCP, UDP, and speed testin�

� Managing video call bandwidt�

� Routing vide�

� Global infrastructur�

� Firewall�

� Managing CPU us�

� Managing microphones, cameras, and speaker�

� Tips for professionals and power users

Sending video and audio comprises several

steps: capturing a digital data stream from a

camera or microphone, processing that stream

to do things like filter out background noise,

then compressing the stream so that it can be

sent over the Internet.

Similarly, displaying video and audio on the

receiving side of a call involves assembling

incoming data, decompressing the streams,

possibly additional processing, then playing the

video and audio in sync.

In between, the data traverses the Internet.

Most video calls route data through a media

server. A media server helps the devices

participating in the call to adapt to changing

network conditions, and can also perform

additional functions like recording the call or

adding real-time transcription.

The building blocks
of a video call.

ENCODING

STREAMING

PLAYBACK

4 Data streams sent over the Internet are

broken up into tiny, discrete packets.

Packets travel at close to the speed of light

and every packet travels independently.

Overall, the Internet is very reliable. But any

individual packet might be lost or delayed.

Network engineers refer to packets that

never arrive at their destination, or that

arrive too late to be useful, as “lost” packets.

Data packets can also be sent across the

Internet in different ways. For example, a

packet might be routed through a Virtual

Private Network server, or might be sent

more directly. Some routes will be faster

than others. Network engineers refer to the

time it takes a packet to be sent over the

network as “latency.”

Video calls are “real-time”
applications. For a conversation to
feel natural, the delay between a
person talking and another person
hearing and seeing that speech must
be less than about 200ms,  
or one-fifth of a second.

REAL-TIME

NETWORKING

Three of the most important drivers
of video call reliability are:

� ensuring that packets are sent in the fastest

(or lowest-latency) way possibl�

� gracefully handling packet los�

� adjusting bandwidth usage in real time to

minimize packet loss

5 UDP (user datagram protocol) is best for

applications like real-time video, where latency is

important. TCP (transmission control protocol) is

best for applications like web pages and non-real-

time video, where receiving every packet is more

important than latency.

Two low-level
networking protocols
carry the vast majority
of Internet traffic:  
TCP and UDP.

TCP, UDP,

and SPEED
TESTING

Network engineers refer to UDP as an “unreliable” or
“not guaranteed to be reliable” protocol, because
lost packets are just ignored at the UDP level, rather
than re-transmitted. Perhaps counter-intuitively,
using the “unreliable” UDP protocol is actually
better for video call quality than the “reliable” TCP
protocol. The real-time nature of video calls means
that re-transmitting every lost packet wastes
significant resources. It’s better to work around
packet loss in more creative ways.

First, video calls should use UDP whenever possible. In some corporate

environments this will require configuring firewalls to allow UDP traffic or

setting up VPN services so that video traffic is not routed over the VPN.  

(See Firewalls on page 16)

Second, most Internet speed test sites test TCP transmission, not UDP. The

results of a TCP speed test are often misleading, because a TCP test measures

overall network throughput but ignores latency and packet loss. If you are

testing how a network will perform for video calls, it’s important to measure

latency and packet loss.

Two things are important to understand about
UDP and TCP as they relate to real-time video
call quality.

A useful rule of thumb is that good video and

audio quality can be delivered if a user’s

network connection can sustain about 800

kilobits per second of real-time throughput.

However, users expect their video calls to

work even if their network connections are

not ideal. And conversely, if more bandwidth

is available, it can be important for some use

cases to deliver higher-quality video and

audio whenever possible.

In addition, network conditions often change

during a call. A nearby device downloading a

big file, or even someone turning on a

microwave oven, can radically reduce

available bandwidth with no warning.

So a video call implementation needs to

monitor available bandwidth in real time and

adjust how the video is encoded and sent

based on current network conditions.

The single most important component of

delivering reliable, high-quality video calls is

bandwidth management. Most video call

issues are network issues, and most network

issues can be avoided by proactively

monitoring network conditions and striking the

right balance between video quality and

bandwidth usage.

6Managing
Video CALL
PLayback

Video uses a lot
of bandwidth.

Variable bitrate means that the video and audio

encoders used are capable of changing almost

instantaneously the compression and quality

targets for outgoing video and audio streams.

Track subscription means that video streams

that are not currently displayed will not be sent

across the network. For example, most general-

purpose video call user interfaces implement a

paginated or active speaker layout for large

sessions. These UX approaches help to limit the

number of video streams that need to be

received simultaneously.

Simulcast means sending multiple video “layers”

with different quality targets at the same time.

For example, simulcast allows a lower-resolution

stream to be received for each of the small

video tiles in an active speaker layout. An

efficient, configurable simulcast implementation

is critical to providing high-quality, large-scale

video call experiences.

lowest acceptable audio quality  

good audio quality for speech 

good audio quality for music or broadcast 

lowest acceptable video quality 

good video quality for general use 

excellent quality for typical camera video 

excellent quality for high-framerate screen sharing

12 kb/s 

20 kb/s 

160 kb/s 

80 kb/s 

 600 kb/s 

1,500 kb/s 

3,000 kb/s

Today’s best video implementations
manage bandwidth by combining
three approaches: variable bitrate,
track subscription, and simulcast.

However, peer-to-peer routing doesn’t work well

for calls with more than a handful of participants.

Media servers allow video calls to scale up to

large sizes. In a call that is managed by a media

server, each participant sends video and audio

to the server. The server then forwards video and

audio as needed to each client.

Note that routing through a media server can

improve quality and reliability even for 1:1

video calls.

Routing through a server can reduce issues  

for clients behind firewalls.

Today’s global Internet architecture has  

evolved to be dependent on large “backbone”

connections. Effective placement of media

servers near Internet backbone routes can result

in lower average latencies and packet losses

than is possible with peer-to-peer connections.

Peer-to-peer routing is simpler, requires less

infrastructure, and can often be less expensive

than routing through a media server. In a peer-

to-peer call, each data packet is sent as directly

as possible from the sender to the receiver of

the audio and video.

There are three main ways
to send video and audio
packets between
participants in a video call:
data can be routed directly
peer-to-peer, or through a
media server, or through
multiple media servers.

ROUTING

VIDEO

There is one argument for using peer-to-peer
routing in regulated or extremely privacy-
conscious environments: end-to-end encryption.
Web browsers implement end-to-end encyrption
for peer-to-peer calls internally, below the level of
javascript application code. If true, auditable end-
to-end encryption is an application requirement,
implementing video calls in a web browser and
using only peer-to-peer routing  
can be a good approach.

� required for large video call�

� generally better performance and reliability

than peer-to-peer routin�

� media server mesh�

� supports larger numbers of participants

(up to hundreds of thousands�

� better quality video for widely  

dispersed users

Routing through multiple media servers is an extension of routing

through a single media server. This is called “mesh” or “cascading”

routing, and allows for larger sessions and better video quality when

users join a session from locations that are geographically far apart.

More on mesh routing on the next page.

Media server

� suitable for 1:1 calls that require very

low infrastructure cos�

� can be appropriate for use cases

where end-to-end encryption  

is a requirement

Peer-to-peer

8
But video calls highlight how important the “almost” is in “almost” instantly. For best

call quality, it's important to situate media servers as close as possible to the users.

It takes about 80ms to send data packets between New York and London. This is

comfortably within our 200ms rule of thumb for the maximum end-to-end video and

audio latency that still allows comfortable, real-time conversation.

The ability to send data packets anywhere
in the world, almost instantly, is a modern
marvel.

GLOBAL
INFRASTRucTuRE

On the other hand, if the media server is in New

York or London, the short “hop” to and from the

media server will take only a few milliseconds.

There is an additional benefit to global

infrastructure combined with a cutting-edge

mesh routing implementation. It’s possible to

connect each user to a media server very close

to them, and route video and audio across

Internet backbone connections between the

media servers. This approach lowers “first hop”

latencies, average transit times, and packet loss

for every participant in a call.

The location of that media server matters a lot.

For example, if the media server is in San

Francisco, the transit time for all of the packets

will approximately double. Our network latency is

now 150ms. That’s starting to leave very little

time for processing, encoding, decoding, and

playing the audio and video on each end of the

connection. (Remember that end-to-end

latency includes *all* processing, not just

network latency.)

Now imagine that the data
packets need to be routed
through a media server,
which will usually be the
case for today’s video call
use cases.

FIREWALLS9 Enterprise firewalls, Virtual Private Networks, and browser
extensions can all block video call traffic.  
It’s possible to automatically route around some traffic
restrictions. In other cases, manual configuration by
users or IT staff will be necessary.

In a corporate or educational setting, users may

find themselves behind firewalls that block

some kinds of Internet traffic. Usually, traffic is

blocked in an attempt to keep systems secure,

prevent exfiltration of data, or both. It is unusual

today for video traffic to be entirely blocked.

But even if video traffic is not entirely blocked,

firewall and network configuration can still

create sub-optimal routing for video traffic,

which impacts call quality.

If firewalls block the UDP protocol and the data

ports used by real-time video traffic, a good

video call implementation will fall back to using

the less efficient TCP protocol and “tunneling”

video through connections that are similar to

typical web-browsing data routes. The technical

name for this approach is TURN (Traversal Using

Relays around NAT). TURN is quite effective at

allowing calls to connect. But video quality and

latency will be poor.

FIREWALLS

A good video call implementation will detect

TURN and other firewall blockage and inform

the user (or the application administrator). In

both cases, the best next step is to work with

IT staff to change the firewall configuration to

allow video traffic.

Individual users will sometimes also install

firewall software, Virtual Private Network

software, or browser extensions that block  

or degrade video traffic. Here again, a good

implementation will automatically detect

common problems and provide information  

to the user or the app administrator.

However, some software issues can be difficult

to automatically diagnose. When helping a

user with a video call issue, a good tech

support best practice is to do a test call with

all firewall software, VPN software, and browser

extensions disabled.

Some firewalls will completely block
traffic to and from any servers that
are not pre-approved by corporate
IT policy. In this case, video calls will
not work at all.

10 Most general-purpose video call user interfaces

default to an “active speaker” layout so that

there is only one high-resolution video tile being

decoded and displayed at a time. (It takes about

ten times as much CPU to decode and display a

1920x1080 video stream as it does to decode

and display a 320x170 video stream.)

Screen sharing presents particularly tricky

challenges. Use cases for screen sharing range

from viewing static, text-heavy documents that

need high resolutions to be legible to sharing

high-framerate video. Combining high

resolutions and high framerates rapidly exhausts

CPU budgets. Most video call applications

default to low framerates for screen sharing,

because sharing documents is more common

than sharing video streams.

managing

CPU usage

The most common reason
for out of control CPU usage
in a video call is receiving too
many high-resolution video
streams at once.

Encoding and decoding video and audio uses a

relatively large amount of CPU (and GPU)

resources. And because encoding and decoding

have to happen in real time, heavy contention for

CPU resources will cause call quality issues.

If video is embedded in an
application that has animations, or
has other features such as chat, it’s
important to profile CPU usage of
the application as a whole.

Best practices for CPU usage:

� default to a “medium” video resolution for

sending camera stream�

� default to low framerates for screen shares,

providing an option to users to increase the

framerate if necessary for your use cas�

� select lower resolution simulcast layers on the

receive side wherever possibl�

� design user interfaces so that fewer streams are

displayed at once, especially on mobile device�

� monitor CPU usage and adjust video resolution

and layout in response to high CPU usag�

� profile the non-video components of the

application to reduce overall CPU us�

� for some use cases, consider using the H.264

video codec

Especially when running inside a web

browser, application-level CPU usage can

easily be high enough to cause dropped

video and audio frames. Usually, this will look

to users like a slightly choppy or laggy video.

But in the worst cases, high CPU usage

causes distracting audio sync or audio

quality issues.

A note on video resolution. It’s very easy to see
the difference between low resolutions and high
(High Definition) resolutions when video is
produced by professional-quality equipment and
techniques. But the difference between full HD
resolution and lower resolutions is usually not easy
to perceive in a video call context.

The cameras that most people use for video calls
have small lenses and small image sensors. They
generally can’t capture video at full HD resolution
and quality in natural lighting situations. The best
way to improve how video looks in a call is to use
an inexpensive ring light or video light! Adding
lighting allows inexpensive cameras to function
much closer to ideal resolutions and framerates.

Additionally, the network is usually the limiting
factor for real-time video. Trying to send a
1920x1080 full-resolution HD stream over a typical
home WiFi network often doesn’t increase the
actual visual resolution compared to the same
stream compressed to 1280x720 resolution.

Video and audio encoding and decoding

technology continue to improve. Currently, the

best codecs for general real-time use are VP8

for video and OPUS for audio. Today, most video

call applications use these two codecs.

The H.264 video codec has excellent hardware

support on many mobile devices, which can

reduce CPU usage, improve performance, and

lengthen battery life. But H.264 hardware

support is usually limited to encoding one video

stream and decoding one video stream at a time.

If you know that all of your users are on mobile

devices and only doing 1:1 calls, it is worth

considering using H.264 instead of VP8.

11
Camera, microphone, and speaker
device management cause a long tail
of video call user experience issues.

11managing
microphones,
cameras and

speakers

Device issues can be particularly challenging to

debug because error information is hard to

generate and is usually platform-specific. For

example, when running inside a web browser,

camera and microphone permissions function

differently than for a native app.

Another challenge is that operating system and

web browser updates often introduce device-

related bugs. Both iOS and macOS, for example,

have a history of “two steps forward, one step

back” bug fixes and regressions relating to

bluetooth audio.

These issues can be difficult to
debug. For example, the root
cause of “nobody can hear me”
could be:

� The wrong microphone is selected at the

Operating System or application leve�

� The microphone has a hardware mute button that

is activate�

� The microphone is muted at the application leve�

� Batteries are dead on a bluetooth devic�

� This is a 1:1 call and the *other* person on the call

has their speaker volume turned down or  

the wrong speakers selected

A good video call
implementation attempts
to capture as much state
information as possible
about hardware device
activity, then translate that
low-level information into
simple UX that is helpful to
the user.

For example, displaying microphone input audio

levels in real-time in a settings dialog helps users

to quickly debug whether their microphone

devices are working properly.

As with network and CPU issues, testing on a

large variety of real-world devices is critical.

There’s no other way to write code that handles

long tail failure modes gracefully.

12TIPS for
professionals
and power users

Use a computer, not a phone or tablet.

Computers have fewer thermal and battery

limitations and are better suited for video calls

than all but the most expensive mobile devices.

Use a relatively new computer with an up-to-

date operating system. You don’t have to use an

expensive computer, but older hardware has

more limitations and less software support than

newer devices.

1

2

Most video call applications and platforms strive

to provide a reliable call experience on any

device, without asking users to change anything

about their everyday behavior.

This is an important goal to aim for, and mostly

achievable. However, if you support users who

make money from video calls (or live streams),

it’s worth suggesting they think about some

simple best practices for ensuring call quality

and reliability.

Tips for professional and
power users:

Restart your video call program or web browser

before starting the call. It seems strange to say

this today, but the age-old advice of “quit and

restart” can still avoid a significant number of

device and performance issues.

Better lighting is usually the easiest way to

improve video call image quality. Buying an

inexpensive LED video light is likely to make a

much bigger impact on how you look than

buying an expensive camera.

Use a wired microphone, not bluetooth, and

wear headphones if possible rather than using

speakers. Bluetooth causes lots of issues with

video calls—wired devices are much, much

more reliable. And using headphones avoids

many common causes of echo and audio

distortion issues.

Consider plugging the computer into your router

with an Ethernet cable rather than using WiFi. WiFi

connections have much higher packet loss and

more failure modes than wired Ethernet

connections. If you can easily run an Ethernet

cable through your space, this is the single best

way to improve video quality and  

it’s very inexpensive. (All home routers have

Ethernet ports.)

Make sure your computer isn’t doing anything else

that uses a lot of CPU or network during your

video calls. Backup software is one of the worst

offenders. So is “broadcast studio” software that

overlays video effects on a camera feed. Quit

other programs before you start your call.

3

4

5

6

7

13WEBrtc—

the standard for
video calls

WebRTC, sometimes in heavily modified form,  

is embedded in Google Meet, Microsoft Teams,

FaceTime, Facebook Messenger, and Discord.

Zoom is the only widely used video call application

today that is not built on WebRTC.

Routing through multiple media servers is an

extension of routing through a single media server.

� The WebRTC standard is both complete enough

and flexible enough to serve a wide variety of

use cases: 1:1 calls, group calls, live streams, and

specialized applications like professional

recording tools�

� Widespread support in web browsers has made

“one click, no download” video calls and video

experiences possible.

WebRTC has taken over the video calling

space for two reasons:

Most video and audio call
applications today make use of  
a technology called WebRTC.

WebRTC provides low-level building blocks

for device management, video and audio

encoding and decoding, and network

connectivity.

Application developers usually don’t build on

top of WebRTC directly. Production video

applications require functionality that is not

core to WebRTC, such as session setup and

state management, bandwidth management,

handling differences between platforms, and

global media server infrastructure. Good

libraries that provide higher-level

abstractions and extended functionality are

available. Commercial Platform-as-a-Service

offerings bundle libraries, SDKs, and

infrastructure together.

� Get Started with WebRTC from Googl�

� WebRTC for the Curious, an open source guid�

� Tips to improve WebRTC video call browser performance from Dail�

� WebRTC Google Group to keep up with changes in Chrom�

� Optimize call quality in larger calls from Dail�

� Scale large video calls with dynamic simulcast layers from Dail�

� Dashboard settings, metrics, and logs for WebRTC from Dail�

� Call quality and beyond with WebRTC logs and metrics from Daily

WebRTC Resources

https://web.dev/webrtc-basics/
https://webrtcforthecurious.com/
https://www.daily.co/blog/tips-to-improve-performance/
https://groups.google.com/g/discuss-webrtc
https://www.daily.co/blog/optimize-call-quality-in-larger-calls-by-manually-managing-media-tracks-in-a-paginated-video-call-ui/
https://www.daily.co/blog/scale-large-video-calls-with-dynamic-simulcast-layers/
https://www.daily.co/blog/announcing-dashboard-sessions-metrics-and-logs/
https://www.daily.co/blog/the-logs-endpoint-and-beyond/

The best video experiences run on daily.

Learn more at daily.co

https://www.daily.co
https://www.daily.co

